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Introduction and Problem Setting
Controlling data quality remains one of the most impactful and difficult-
to-automate parts of ML applications [1]. Here, we focus on one of the
most common and relevant use cases of ML applications: we assume that
an ML model was trained on clean data, and at inference time, the data
quality deteriorates, impacting the predictive performance.
For missing values, we already showed [3] that using ML-based approaches
to capture statistical dependencies between columns are efficient. In this
study, we combine these imputation methods with conformal prediction
(CP) to automatically detect and clean erroneous cells of heterogeneous
tabular data.

Research Question and Hypothesis
Can calibrated ML models reliably and without manual intervention pre-
dict whether a single cell is erroneous and clean it if necessary?
We hypothesize that using conformal inference [6] to turn models into
set predictors helps to automate data cleaning problems.

ML-based Data Imputation
Consider a dataset represented as a table or matrix Xn×d. We train an
imputation model f̂c for each column c ∈ {1, ..., d} that predicts the value
in cell i, c given the values in row i except for the value in column c, i.e.:

Xi,c = f̂c(X{1,...,d}\{c})

Conformal Predictors
Conformal predictors are uncertainty quantification methods that allow the
calculation of statistically rigorous confidence intervals (regression) or sets
(classification) from any point estimator for a user-defined error rate [6].

1. sample Dtrain and Dcalib i.i.d for the tabular dataset D := X × Y
2. fit a (arbitrary) predictor f̂ to the training data Dtrain

3. compute nonconformity sores Rcalib using nonconformity score
function S:

ŷcalib = f̂ (Xcalib)
Rcalib = S(ŷcalib, ycalib)

4. compute the k-th empirical quantile of Rcalib, where α ∈ [0, 1] is the
user-chosen error rate:

k = d(n + 1)(1 − α)e
n

q̂ = quantile(Rcalib, k),

For new and unseen test data Xtest construct the prediction set C, which
depends on the chosen nonconformity score function S. The conformal
framework guarantees that C(Xtest) contains ytest (the true label) with
at least probability 1 − α:

P(ytest ∈ C(Xtest)) ≥ 1 − α

If the model f̂ fits the data Dtrain well, the prediction sets C will be small.
However, if f̂ performs poorly, the prediction sets will be larger to satisfy
this Statement, which is known as (marginal) coverage. However, in this
work, we use conditional conformal prediction, for more information see
the paper Appendix B.

Conformal Data Cleaning (CDC)
CDC uses conformal prediction to calibrate the ML models of the above
described imputation approach and turn them into set predictors.

1. Error Detection: For new and unseen test data Dtest
n×d and error

rate, e.g., α = 0.01, ̂cleaner predicts confidence sets Ci,c, where
∀i ∈ {1, ..., n} and ∀c ∈ {1, ..., d}. If Dtest

i,c /∈ Ci,c, we assume Dtest
i,c

as incorrect and compute a boolean matrix Btest
n×d ⊂ {0, 1}, which

represents incorrect values of Dtest as 1.
2. Error Cleaning: Knowing which cells are erroneous, i.e., Btest,

allows to remove those and treat the situation as a missing value
problem. Therefore, we once more leverage ̂cleaner’s underlying ML
models to impute them.
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Experiments

Cleaning methods are trained on high-quality training data without
errors
Datasets:

16 heterogeneous tabular datasets [2] from OpenML
80/20 split into training and test dataset
We use Jenga [5] to corrupt the test datasets

four error types: swapping values between columns, random scaling, Gaussian noise, and shifts
of categorical value distributions
five error fractions: 1%, 5%, 10%, 30%, and 50%

320 corrupted datasets with 0% to about 41% with 11% ± 14 errors on average
Baselines:

Not calibrated ML models that are otherwise applied in the same way
Garf [4] uses a SeqGAN to learn functional dependencies between columns and
generate data repair rules applied for data cleaning

Evaluation:
True positive rate and false positive rate of error detection
Downstream performance improvement relative to the corrupted performance

Results: Error Detection
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True Positive Rate (↑)
lower hyperparameter values lead to higher (better) TPR
CDC is more robust against error fraction

False Positive Rate (↓)
lower hyperparameter values lead to lower (worse) FPR
hyperparameter’s values have more influence on the FPR (ML more than CDC)
increasing hyperparameter reduces difference between ML and CDC
CDC has in ∼ 80% of the experiments fewer false alarms

Results: Downstream Improvement

[0-10] (10-20] (20-30] (30-40] (40-50]
Error Fraction (%)

−5

0

5

10

15

20

25

D
ow

ns
tre

am
 Im

pr
ov

em
en

t (
%

)

Hyperparameter
0.5
0.8
0.999

Method
CDC (ours)
Garf
ML

CDC is more robust against error fraction
in ∼ 61% of the experiments, CDC leads to better downstream
improvements
in ∼ 66% of the experiments, higher confidence level leads to better
downstream performance

Results: Relative Confidence Set Size

sort by relative confidence set sizes (easy, moderate, difficult)
difficult experiments mostly degrade downstream performance
easy experiments mostly improve downstream performance
opens possibilities for data monitoring

Conclusion

CDC can detect and clean erroneous values of heterogeneous tabular
data without user interventions
CDC outperforms the baselines in about ∼ 61% of our experiments
CDC using high confidence level improves downstream performance in
∼ 60% of the cases
Results highlight potential of automated imputation combined with
modern calibration methods to tackle data quality problems

Future Work

Iterative cleaning similarly to multiple imputation could further
increase CDC’s performance
Apply CDC as data quality monitoring and data cleaning approach

Limitations

Tabular datasets as defined by Grinsztajn et al. [2]
five to 15 columns (mixed types)
4, 800 to 89, 000 rows (no missing values)
regression, binary classification, and multi-class classification

High-quality training data without any errors
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