Sebastian Jäger
Sebastian Jäger
Publications
Projects
Talks
Contact
CV
GitHub Resume
Publications
Type
Conference paper
Journal article
Preprint
Report
Thesis
Date
2022
2021
2020
2018
GreenDB - A Dataset and Benchmark for Extraction of Sustainability Information of Consumer Goods
We present a second public release of the GreenDB and present a first benchmark for sustainability information extraction.
Sebastian Jäger
,
Alexander Flick
,
Jessica Adriana Sanchez Garcia
,
Kaspar von den Driesch
,
Karl Brendel
,
Felix Bießmann
PDF
Code
Dataset
Slides
DOI
Nudging Sustainable Consumption: A Large-Scale Data Analysis of Sustainability Labels for Fashion in German Online Retail
A Large-Scale data analysis of sustainability labels for fashion in German online retail.
Maike Gossen
,
Sebastian Jäger
,
Marja Lena Hoffmann
,
Felix Bießmann
,
Ruben Korenke
,
Tilman Santarius
PDF
DOI
GreenDB: Toward a Product-by-Product Sustainability Database
We present the first public release of the GreenDB and describe its scraping pipeline.
Sebastian Jäger
,
Jessica Greene
,
Max Jakob
,
Ruben Korenke
,
Tilman Santarius
,
Felix Bießmann
PDF
Code
Dataset
DOI
A Benchmark for Data Imputation Methods
Comparison of data imputation methods on a wide range of datasets, missingness patterns, and missingness fractions.
Sebastian Jäger
,
Arndt Allhorn
,
Felix Bießmann
PDF
Code
DOI
Compressing BERT - An Evaluation and Combination of Methods
Evaluation and improvement of
BERT-of-Theseus
based on real world datasets and tasks.
Sebastian Jäger
PDF
Parallelized Training of Deep NN – Comparison of Current Concepts and Frameworks
Kubernetes based evaluation of TensorFlows’ and MXNet’s throughput, scalability and practical ease of use.
Sebastian Jäger
,
Hans Peter Zorn
,
Stefan Igel
,
Christian Zirpins
Slides
DOI
Machine Learning Im Kubernetes Cluster
Erläutert wie Kubernetes und das passenden Tooling hilft, Machine-Learning-Projekte effizient und erfolgreich umzusetzen.
Sebastian Jäger
Source Document
Horizontales Skalieren Von Deep Learning Frameworks
Kubernetes basierte Evaluation der horizontalen Skalierbarkeit von TensorFlow und MXNet mit Hilfe der Datensätze Fashion-MNIST und PTB.
Sebastian Jäger
PDF
Cite
×